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Fluctuations of a 
Macro-Spin in a 
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Fluctuation phenomena in a superradiating atomic system are investigated 
in the framework of the generalized phase space method. An operator form 
of the superradiant master equation is mapped onto a c-number space. 
Evolution of the most probable path and small deviations from the path 
are determined. Fluctuations around the path are solved in a closed form. 
A remarkable enhancement of fluctuation is observed and this is recognized 
as a sort of anomalous fluctuation around an unstable point. 
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1. INTRODUCTION 

The p h e n o m e n a  of  super rad iance  (~) have received renewed a t ten t ion  recently. 
In  the f r amework  o f  the mic roscop ic  theory  the so-called super rad ian t  mas te r  

equa t ion  was obta ined ,  (2,a) which describes a t empora l  evolu t ion  o f  the 
a tomic  re laxat ion  process  for  the dens i ty  matr ix .  Thus the p rob lem reduces 
to  a k ind  o f  non l inear  spin re laxat ion.  Whi le  the ordered  d is t r ibut ion  funct ion 
was used to examine  the super rad ian t  mas te r  equat ion ,  (4) recent  work  (5) 
has  employed  a m e t h o d  based  on the a tomic  coherent  state. (6) I t  seems tha t  
interest ing and i m p o r t a n t  aspects  o f  the p r o b l e m  are  f luctuat ions in the 
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superradiant process. Indeed the numerical calculations c7~ indicate remarkable 
fluctuations in the superradiating atomic system. Therefore our main purpose 
in this work is to treat fluctuation phenomena by an analytical method. 

In Section 2, we first develop a systematic approach to the superradiant 
master equation, applying the phase space method developed earlier, (~,9~ 
which is summarized in the appendix. Making use of the phase space method, 
we find an equation for the probability distribution function mapped from 
the operator form of the superradiant master equation. In the same section, 
evolution of the most probable path and the deviation from the path are 
determined. Fluctuations around the path are explicitly given. This is per- 
formed by paraphrasing the theory recently developed by Kubo et al. ~~ 
In Section 3, in order to shed more light on this problem, we discuss various 
aspects of the behavior of the physical quantities in a moving frame of the 
most probable path. In the final section, some remarks are presented. 

2. S U P E R R A D I A N T  M A S T E R  E Q U A T I O N  A N D  
E V O L U T I O N  OF A T O M I C  V A R I A B L E S  

In order to investigate the fluctuation phenomena in the superradiant 
system, we use the phase space method briefly summarized in the appendix. 

After elimination of the photon field variables, the atomic system is 
governed by the following equation for the density matrixC2,a~: 

ti = �89 pS+] + [S-o,  S+]} (1) 
where 

11 = 2gZ/K 

K- 1 is the relaxation time of the photon field and g is the coupling constant 
between the field and the atomic system. 

Let us define a c-number function F(A~(O, 4)) from the density matrix 
p based on the anti-normal rule of association. Then Eq. (1) becomes 

/O(A~(O, ~b) = -�89 2 + Lv 2) + L2m~ - i(2S + 1)(Lxmy - L~mx)]F(A~(O, (~) 
(2) 

It is more appropriate to transform the variables from 0 and 6 to mx and 
my; the orbital angular momentum operators can be written as 

( -m  0 Ly = -irn~ 0 Lx = imz Om u, ~m~' L~ = i my -~--m-mx x (3) 

when acting on F(A>(O, (~). We can easily see that 

[m,, L,] = ima (4) 

where ~, v, ?t, form an even permutation of x, y, z. 



Fluctuations of a Macro-Spin in a Superradiant System 

Then it is straightforward to rewrite Eq. (2) as 

f (*)(mx,  my, -r) = --~m~ C1~ - Om--~u Cly + ~ E ~ C2~x 

0 2 1 a 2 "1 
E em~em-~ C 2 ~  + - ~ ~ C2~y~f(A)(m~, 2 Omy 

where we have put 

"r = I1St, E = S -1 

C1~ = mxm~ - �89 + 1), 

C2~ = m~(1 + m~ - m~Z), 

and 

C2yy = m~(1 + m~ - my 2) 

In deriving Eq. (5), we have used the relation 

mx 2 + m y  2 + mz 2 = 1 

and the function off~A~(mx, my, ~-) has been defined by (A.7). 
Making use of Eq. (5), we find cumulant equations as 

d ( m , r  ( 1 - 2 ) ( m x m . ) ~ + ( ( m . ) o - 2 ( l + ( m . ) c ) ) ( m ~ ) c  

~/-~(m~)~= 1 - ~  ( m . ) , -  1 + ( m . 2 ) , - ~ ( 1  + (m.)o) 2 

d 2 

+ 3(m~)~(mxm~),  - (m~)o(1 + (m~)o - (m~)~2)} 

d 

+(1 + (m~)c)(1 - (m~)~2)} 

d (m~m~)o = (2(mxm~2)~ + 3(m~)~(mxm~)~ + (m.)~(mz2)~) 
d~- 

-~{2(mxm~')~  + (2 + ~(m~)~)(mxm~)~ 

+ 3(m~)~(m~2)~ + (mx)~(m~)c(1 + (m~)~)} 

m u , "r) 

Cly = mymz - �89 + 1) 

C2xu = C2yx = mxmymz, 
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f f •  <mxm~)c = (2<m~,mym,)c + (mx)~(mum.> c + <mu)c<mdn,,)~ 

+ (m~>c(m~m~)c) - e{2(mxm~m~)c 

+ (1 + 2(m~)~)(m,~m~)~ - -~(m~)~(m~,m,)~ 

- ~(m~)c(m~mx)~ + (m~)~(m~)c(m~)~} (7f) 

and so on. Equations for the m~ are derived by replacing m~ with m~. 
Dt~e to the fact that the characteristic t ime ofa  saperradiaat phenomenon 

is very short, i.e., ~-= I~St ~ O(1), we can prove self-consisteut[y that 
Eqz. (7a)-(7f) have a solution of the form 

(m~Zm~"m~)c = d+"§ + ~z+"~+~Az + . . .  (8) 

Then, putting 

(m. )~  = ~ .  + eu~ + O(eZ), (mum~)~ = eauv + O(e z) 

we find a set of evolution equations as 

(d/d.r)mx = N~m. (9a) 

(d/d.r)m~ = m~ 2 - -  1 (9b) 

(d[dT) Ux = ~u~, + ~ u ~  + ~ - �89 + ~ )  ([Oa) 

(d/dr)u~ = 2m.u.  + a~ - �89 + m~) 2 (lOb) 

(d/d~')axx = 2m~oscx + 2m~,a~ + m~(l + m~ - m., z) (I ia) 

(d/dr) a;. = 4~ ,a~  + (1 + m~)(1 -- m~ 2) ( l lb)  

(d/dr)a~u = 2 ~  + ~ % ~  + h~crxz -- mxmurn~ ( l ld)  

Similar equations containing mu are also obtained. The most  probable 
path of (m. )  is determined by (9), whereas Eqs. (10) and (11) describe the 
deviations from the path and the fluctuations around the path, respectively. 

Here we must take into accout~t the constraints imposed by (6): 

(m~ ~) + (m~ ~) + (m.  ~) = 1 
and 

(m~Zm.)  + (my~m.)  + ( m ~ m . )  = ( m . ) ,  t ~ = x, y, and z 

which yield 

and 

~ 2  = 1 (12) 

+ 0 03)  
tL 

~ .  m-'~a~. = O, v = x, y, and z (14) 
t t  
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Let us proceed to solve Eqs. (9)-~(11) under  the condit ions (12)-(14). 
The  mos t  p robab le  pa th  is obta ined as 

= (rex, ~ y ,  ~ )  = (sin 0(r) cos 4'o, sin Off) sin 4'0, cos Off)) (15) 

where  

cos 00- ) = - t a n h  ~, sin 0(r) = sech ~, ~ = r - ~'m (16) 

where "rm and 40 represent  the initial condi t ion for  the po la r  and azimuthal  
angles, respectively [cos 0o = tanh  rm, 0o = 0(0)]. 

Tak ing  into account  the symmet ry  of  the system around the z axis, 
we assume the solution of  Eqs. ( i0) and (1 i) in the fo rm 

u = (ux ,  u~,  u~) 

= (v(~) sin 0(r) cos 40, v(~) sin 0(r) sin 40, v~(~) sin 2 0(,)) (17) 

ax,~ = sin 2 0(,)  [e~(~) + a2(~) cos 2 40] (18a) 

%g = sin 2 0(r) [~(~) + os(~) sin 2 40] (18b) 

~ = %(~) sin40(,) (18c) 

~ = %(~) sin a 0(-r) cos 4o (18d) 

%~ = ~4(~) sina0(r) sin 4'0 (18e) 

and  

exu = ~5(r sin 2 0(r) sin 4o cos 40 (180  

The  deviat ions v and v~ and the variances ~k (k = l, 2 ..... 5) are related to 
one another  th rough  

a~ + a 2  = a 4 t a n h ~ ,  r = % 

a4 = a3 tanh ~ (19) 

and 

2el + ~ + ~ s e c h  2~ + 2 v -  2v~ tanh~  = 0  

which are direct consequences of  (13) and (14). In fact, (19) are consistent 
with (9)-(11). Therefore  we have only three independent  equat ions:  

(d/d~)(r  + cr3) = e - ~  (20) 

(d /d~)(al  - aa) ~ - 1 (21) 

and  

(d /d~) (2G - 2a3 tanh  ~ + a3 - al = 0 (22) 
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In order to obtain solutions of (10) and (11), it is sufficient only to 
solve el ,  %, and vz. Thus we have 

el = %(0) - 3(~ + rm + �89 e-2r - 3 e2*-) (23) 

% = %(0) + �89 + rm - 3 e-2r + �89 (24) 

and from (22), v, is obtained as 

v, = 3el - (3 + tanh ~)(r a + K (25) 

K is a constant which is determined later. In this way we have solved the 
problem completely. 

The variances % .  however, should not be confused with the real 

fluctuations ~,v defined by 

,~,~ = ((S.  - ( & ) ) ( &  - ( & ) )  + ( &  - ( & ) ) ( &  - ( & ) ) ) / 2 S  ~ 

Explicitly. these are given by 

5x~ = (r:cx + 3(1"-  m~ =) (26) 

~xz = ax~ - 3mxm~ (27) 

and 

g= = ~ .  + �89 - m==) (28) 

In deriving these expressions, we have used phase space forms of the spin 
operators, for example, (m 

S~ ---* S m x  (29) 

S x 2 - +  S ( S  - { ) m ,  2 + { S  (30) 

Thus we have obtained ~'s in an analytical form. Figure 2 shows some 
examples of the fluctuations. More details will be given in the next section. 

3. F L U C T U A T I O N S  IN A M O V I N G  F R A M E  

In order to clarify the results obtained in the preceding section, we shall 
discuss the variances and the deviations in the system moving along with the 
classical spin (~x(r), ~ ( r ) ,  m~(r)). Then (rex,, my, ,  m~,) in the new coordinate 
system (see Fig. 1) is represented by (mx)[sinO  ,coS om = sin0 T, sin OcOS o c~ 

m;, - c o s  0(r) cos q50 - c o s  0(r) sin qSo sin 0(r) 1 m~ 
(31a) 
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Fig. 1. Representation of the most probable value 
and the deviation u in polar coordinates. 

Y 
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the inverse t ransformat ion of  which is given by 

(mx) [sinO('c)cOS6o -sinq~o -cosO(r) cosq~o](m~,) 
my = sin 0(~-)sin~o cOS~o - c o s 0 ( r )  sin~o my, 

m~ cos O(r) 0 sin O(r) m~, 

(31b) 

Using (31a), the variances and the deviations in this frame can be cal- 
culated, for  example, as 

(mx,mx,)c = ~, ~u~,(rnumv)c = e ~, mumv%v + O(e 2) 
l~pV ,g,lt 

Hence we have 

~x,x, = ~ m,mv%v = 0 

where we have used (14). In  the same way, we obtain 

~x'.' = %'~" = cb~'y' = 0 (32) 

cry,x, = 0 (33a) 

%,y, = cq sin 2 0(~-) (33b) 

~z,., = or8 sin 20(r )  (33c) 

m-"=, = 1, my, = mr, = 0 (34) 

u~, = -�89 + o,,z,) (35a) 

uy, = 0 (35b) 

and 

u~, = sin O(r) {(al - ea) cos 2 0(~')/2 - [~1(0) - ca(0)] cos 2 0(0)/2} (35c) 

N o w  the meaning implied by  the condit ions (6) is clear. That  is, it is 
equivalent to the following statements:  

(i) In  the frame moving along with the classical spin, there are no cross 
correlations or  fluctuations in the radial direction. 
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(ii) The  effective length of  the spin and the variances are related to 
each other through (35a); as the fluctuations become larger, the average length 
of  the spin becomes  shorter  and vice versa. 

The initial condit ions are determined by requiring that  the polar  and 
the az imuthal  angles of  ( m )  coincide with those of  the classical spin ~ ,  
i.e., u,, = 0 at r = 0 (see Fig. 1). Then the constant  K i n  (25) is determined 
to be  

K = �89 + tanh "rm)[O'l(0 ) - -  0"3(0)] 

and hence we can freely choose the initial condit ions on r 0(0), %,v,(0), and 
%,~,(0). Initial values of  other  quantit ies are related th rough  (I9).  

30" 

20 

qO 

-20 

1 ~ 3 "s 

Fig. 2. Typical behavior of the various quantities as a function of ~- for 0o = ~r/12. 
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~ 
X X  

I0 ~] e,, =r[./ 2 L 

10 4 / ~/12 

, j 

rt:l~ 

�9 �9 �9 �9 = 

Fig.  3. The  t ransverse f luctuat ion ~=  as a funct ion  o f  ~- for  various initial values o f  .0o. 

T h e  va r i ances  a n d  the  d e v i a t i o n s  in  the  o ld  f r a m e  a re  exp res sed  in  t e r m s  

o f  t h o s e  in  the  m o v i n g  f r a m e  as  

a~x = %,~, s in 2 r + crz'~' cos2 0(~') cos  2 r 
%y = %,~' cos  2 r + ~rz'z, cos  2 0(r)  s in 2 r 
~ = ~,~, s in 2 O(~) 

~x~ = -cry,z, s in 0(~-) cos  O(~-) cos  r 
~ = - a ~ , e  sin 0(~-) cos  0(~-) s in r 
~rxv = - - s i n  r cos  r [ay,u, --  ~,~, cos  2 0(~-)] 

Ux = cos  r s in O(T) - -  U~, COS 0(~')] 
U~ = sin r [ux, s in  0(~-) - -  u~, cos  00-)] 
uz = ux, cos  O (r )  - -  u~, sin 0(~-) 

(36) 

In  th is  way ,  we are  n a t u r a l l y  led  to  the  exp re s s ions  (18) aga in .  W e  can  see 
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that the variances el and a2 defined there are directly related to the fluctua- 
tions in the moving frame through (33b) and (33c). 

We plot ~xx, ~yu, ~ ,  and ~,~ as functions of  ~- in Fig. 2. The deviations 
u~ and ux are also plotted in Fig. 2 as functions of  ~-. The fluctuations ~x,: 
and ~ are plotted for various initial conditions 00 in Figs. 3 and 4, respec- 
tively. The variances ~,~, and ~y,u, and the deviation ux, in the moving f lame 
are shown in Fig. 5 as functions of  0(~-). We find some interesting features 
from these figures. For  example, ~xx vanishes at 0 = ~r/2, while ~,:~ changes 
its sign there. This behavior is attributed to the factors appearing in (36) and 
also the consequences deduced from the earlier statement (i). The deviation 
ux, becomes large near O(r) ~ +r/2 due to the large fluctuations of  the ~'s. 

~zz 

~/12 

~ L,, 
Tz//. 

Fig. 4. The longitudinal fluctuation ~z as a function of +-. The initial values of 0o are the 
same as those for ~x~. 
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20. 

lO. 

-! 0 

-20 

/•=30 

! 

= 3 0  

Fig. 5. The longitudinal fluctuation [~,~, and the transverse deviation u~, in the moving 
frame as a function of 0(r), 

As O(-c)---> rr (-c-+ oo), ~ 'z '  and ~y,~, tend to a constant  �89 corresponding to 
the fact that  the spin relaxes to the angular  m o m e n t u m  eigenstate IS, - S ) .  

Before concluding this section, we discuss the dependence of  the maxi-  
m u m  value and the half-width of  variances on the initial conditions.  When  
we release the spin f rom the upper  half-sphere, the variances ~,z, and ~u'u' 
have their m a x i m u m  near  0(~-) = ~r/2. These variances are given by  

~,~, = �89 20(r )  In tan �89 - cos 0(~)] + ~m, sin 2 0(~) 
(37) 

gy'v' = --�89 sin~ 0(r) In tan �89 + cos 0(r)] + ~ m  sin 20(T) 

where we have defined ~m, and ~m u, by  

~m, = ~3(0) + +(In cot 2�89 o + cot 2�89 + 1) 
(38) 

~,~, = al(0) + � 8 8  cot 2 �89 + cot  z �89 + 1) 
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W e  plo t  [~mz, and  [yr,,y, as funct ions  of  0o in Fig.  6; [ m  and ~mv,y,, in general ,  

will no t  give the  correct  m a x i m u m  values,  bu t  as 00 ~ 0, the first terms in 
(37) can be neglected,  and  therefore  the  m a x i m u m  values are a p p r o x i m a t e d  

by  them. 
A hal f -width  A can be defined as the  difference o f  the angles 0~ and  02 

where [ a t ta ins  the  value [~/2. Chang ing  0's in to  c,'s t h rough  the re la t ion 

0 = ~r/2 - a, we have a 1 and  a 2 as the solu t ions  o f  the fol lowing equa t ions :  

1 - sin a 2 sin a] 
1 + sin a 1 

, [ 
[~"' = 2(1 - 2 cos 2 a) c~ c~ In 

and  

[m = 1 [ 
~'u' 2(2 cos  2 a - 1) c~ a In - -  

1 -- sin c~ 1 
1 + s i n , ~  + 2 s i n a  J 

m 

1 0 2  , 

10 

! 

Fig. 6. Measure of the maximum values of the fluctuations [y,y, and [,,,, as a function 
of the initial value 0o. 
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First we note from (38) that the ~m become exceedingly large as the 
initial direction of the spin approaches the north pole (see Fig. 6). This is a 
sort of anomalous fluctuation around the unstable point. (1~ 

As for the width, A decreases as ~m increases, and tends to rr/2 as 
~m ____>. O0. 

4. C O N C L U D I N G  R E M A R K S  

We have investigated fluctuation phenomena of a macro-spin under the 
influences of a radiation field. This system gives an interesting example of a 
stochastic motion of spins. We found remarkable fluctuations when the spin 
passes through the superradiant state (0 = ~r/2) and interesting behavior 
of the transverse fluctuations. 

Our findings afford a solvable, typical system which shows anomalous 
fluctuations around the unstable point. <1~ 

A P P E N D I X  

In this appendix, a brief summary is given of the generalized phase 
space method of the spin systems. (a'9) 

An operator G is mapped onto a c-number function F(N)(O, r (normal 
rule of association) defined as a diagonal element of the Bloch state IS; a~): 

F<~>(O, r = <S; o, lGlS; a,> (A.I) 

or onto a function F~A)(O, r (anti-normal rule of association) obtained by 
expressing the operator in the form 

f d~ IS; ~><S; o, I F(~'(O, r G = (2S + 1) (a.2) 

where co denotes a solid angle spanned by 0 and r 
The trace of two operators G1 and G2 is expressed by 

g &o 
Tr GzG2 = (2S + 1) | "1 ,~, r r ~tT(N)/A 

3 
(a.3) 

The following theorem turns out to be very useful for obtaining a c- 
number form of an equation for the density matrix p. 

Products of operators S~G and GS, are mapped onto a c-number space 
according to the rule given by 

& G  --> ~<.a>F(a>(O, r 

GS, --> 5e(ua)*F(a)(0, r t* = x, y, and z 
(A.4) 
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where the superscript ~2 specifies a mapping  rule. Explicitly they are given by 

5e(N) = S m  + �89 - �89 X L) (A.5a) 

for  the normal  rule o f  association, and 

5 a(A) = (S + 1)m + �89 + �89 • L) (A.5b) 

for  the ant i -normal  rule o f  association, respectively. The pseudo-spin m 
is defined by 

m = (mx, my, rn~) = (sin 0 cos ~, sin 0 sin ~, cos 0) 

and L is the "orb i ta l  angular  m o m e n t u m "  operator  defined by (3). 
F r o m  (A.3), a statistical average is obtained in this phase space as 

( O ( m x ,  my,  t ) )  

= f dm~drnyf(A>(rn~,my, t)o(mx, mD/f d m x d m y f ( A ) ( m ~ , m y ,  t ) (A .~6)  

where the quasi-probabil i ty distribution function is introduced by 

f(A)(rnx, my, t) = F(A)(m~, my, t) /mz (A.7) 

the funct ion F(A)(O, (o) being obtained by mapping  the density matrix. 
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