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Fluctuations of a
Macro-Spin In a
Superradiant System
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Fluctuation phenomena in a superradiating atomic system are investigated
in the framework of the generalized phase space method. An operator form
of the superradiant master equation is mapped onto a ¢-number space.
Evolution of the most probable path and small deviations from the path
are determined. Fluctuations around the path are solved in a closed form,
A remarkable enhancement of fluctuation is observed and this is recognized
as a sort of anomalous fluctuation around an unstable point.

KEY WORDS: Superradiance; phase space methods; anomalous
fluctuations.

1. INTRODUCTION

The phenomena of superradiance ™ have received renewed attention recently.
In the framework of the microscopic theory the so-called superradiant master
equation was obtained,'>® which describes a temporal evolution of the
atomic relaxation process for the density matrix. Thus the problem reduces
to a kind of nonlinear spin relaxation. While the ordered distribution function
was used to examine the superradiant master equation,’® recent work®
has employed a method based on the atomic coherent state.® It seems that
interesting and important aspects of the problem are fluctuations in the
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superradiant process. Indeed the numerical calculations ™ indicate remarkable
fluctuations in the superradiating atomic system. Therefore our main purpose
in this work is to treat fluctuation phenomena by an analytical method.

In Section 2, we first develop a systematic approach to the superradiant
master equation, applying the phase space method developed earlier,®-®
which is summarized in the appendix. Making use of the phase space method,
we find an equation for the probability distribution function mapped from
the operator form of the superradiant master equation. In the same section,
evolution of the most probable path and the deviation from the path are
determined. Fluctuations around the path are explicitly given. This is per-
formed by paraphrasing the theory recently developed by Kubo et al.?
In Section 3, in order to shed more light on. this problem, we discuss various
aspects of the behavior of the physical quantities in a moving frame of the
most probable path. In the final section, some remarks are presented.

2. SUPERRADIANT MASTER EQUATION AND
EVOLUTION OF ATOMIC VARIABLES

In order to investigate the fluctuation phenomena in the superradiant
system, we use the phase space method briefly summarized in the appendix.

After elimination of the photon field variables, the atomic system is
governed by the following equation for the density matrix®:

p=3{IS_, pSi] + [S_p, S.T} 1)
where
I, = 2g%«

«~1 is the relaxation time of the photon field and g is the coupling constant
between the field and the atomic system.

Let us define a c-number function F*X(, ¢) from the density matrix
p based on the anti-normat rule of association. Then Eq. (1) becomes

F(A)(Bs ¢) = _%Il[(sz + Lyz) + L2mz —i2§ + 1)(Lxmy - Lymx)]F(A)(e’ ‘}S)
()]

It is more appropriate to transform the variables from 6 and ¢ to m, and
m,; the orbital angular momentum operators can be written as

. 0 . 0 f . 0
Lx=lm25n—1;, Ly—“lmz%, Lz~l(mygn'; m"?r—n—y) (3)

when acting on FX(6, ¢). We can easily see that
[mlu Lv] = im, (4)

where u, v, A, form an even permutation of x, y, z.
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Then it is straightforward to rewrite Eq. (2) as

P ;) 0 1 &2
Ef(A)(mx’my’T) = {—W Clx - 'é;rl—cly -+ Eeam 2C2xx
x Y x
02 1 o2 A)
= Gmgom, 0 3 oz Con [ s 7))

where we have put
r=I18 e=8""1

Ci, =mam, — tem, (m, + 1), Cyy = mym, — em,(m, + 1)

Cosx = m(1 + m; —m?),  Couy = Cyype = mumym,
and

Coyy = m(1 + m, — m,?)
In deriving Eq. (5), we have used the relation

m2+m2+m?=1 ©)

and the function of f**(m,,, m,, 7) has been defined by (A.7).

Making use of Eq. (5), we find cumulant equations as

g me = (1= 5)mamoe + {amd = 51+ mogfmo.
Fmoe= (1= 3jmde = 14 Do =50+ myt (v

G (Mo = AmPmde + mdolmamey + (mdom2>e)
_€{2<mx2mz>c + (1 + 2<mz>c)<mx2>c - {m
+ 3<mx>c<mxmz>c - <mz>c(l + <mz>c - <mx>02)} (7C)
2 (mBe = 2AmDe + Am>mA>)
+E{_2<m23>c - (3 + 5<m2>c)<mz2>c
0+ YU = >} (7d)
Z mam.de = Qmam 2. + Kmdomamyd + (mo>m.20)

'—5{2<mxm22>c + (2 + %<mz>c)<mxmz>c
+ Ky lm2ye + M lmp(1 + <mo)} (7e)
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2 mamype = Qmammy. + (mdmmsde + < (mam.,
+ <mz>c<mxmy>c) - E{2<mxmym2>c
+ (] + 2<mz>c)<mxmy>c - %(mx>c<mymz>c
= HKmylmm, >, + <M mypelm,y e (7f)

and so on. Equations for the m, are derived by replacing m, with m,.

Due to the fact that the characteristic time of g superradiant phenomenon
is very short, ie., 7 = I,St ~ O(1), we can prove self-consistently that
Eqs. (7Ta)~(7f) have a solution of the form

(mx’my’"mz")c = elIMIR-L Y g Mg 4oL 8)
Then, putting
<mu>c =m, + ey, + 0(52)5 <mumv>c = €0y, +- 0(52)

we find a set of evolution equations as

(djdn), = i, 9a)
(d/dnym, = m,? — 1 (9b)
(dldr) u, = Mu, + mu, + ., — 3, (1 + ) (1Ga)
dldnu, = 2mu, + a,, — 3(1 + m,)? (10b)
(dldr)o . = 2,0, + 2,0, + W1 + F, — ) (1ia)
(dldr) e,, = dimpo,, + (1 + m)(1 — M%) (11b)
(d/dr)e,, = 3,0, + Mo, — m,m,(l + m,) (11c)
(d]dr)o,y = 2M0,, + W0, + 0., — MM,Hi, (11d)

Similar equations containing m, are alsc obtained. The most probable

path of <{m,> is determined by (9), whereas Eqs. (10) and (11) describe the

deviations from the path and the fluctvations around the path, respectively.
Here we must take into account the constraints imposed by (6):

M2 + <m?) + (m?) =1

and
<m2m,y + <mjlmy + (mjm> = (m,y,  p=xy,andz
which yield
>m2=1 (12
Z(zﬁfuuxz + auu) =0 (13)
I’
and

> Mo, =90, wv=xyandz 14)
"
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Let us proceed to solve Egs. (9)=(11) under the conditions (12)-(14).
The most probable path is obtained as

m = (,, m,, m,) = (sin 8(r) cos ¢, sin 8(r) sin ¢,, cos 8(r))  (15)
where
cos (=) = —tanh {, sin 6(r) = sech {, {=171—1, (16)

where ,, and ¢, represent the initial condition for the polar and azimuthal
angles, respectively [cos 8, = tanh 7, 8, = 6(0)].

Taking into account the symmetry of the system around the z axis,
we assume the solution of Egs. (10) and (11) in the form

u = (ux, uya uz)

= (v(8) sin (7) cos ¢, v({) sin 8(7) sin ¢, (L) sin? H(7)) {1
0y = SIn® 0(7) [01(0) + 05(0) cos? ¢o] (18a)
0,y = 8in? 8(7) [01(0) + 05({) sin? ¢] (18b)
0,, = o5(0) sin*d(r) (18¢c)
G = a,(0) sin® 8(7) cos ¢ (18d)
oy, = 0,(L) sin®8(7) sin ¢, (18¢)

and

Gy = 05(0) sin? 6(7) sin ¢, cos ¢ (18f)

The deviations v and v, and the variances o, (k = 1, 2,..., 5) are related to
one another through
6, + g5 = o, tanh ¢, oy = O
oy = oz tanh (19
and
20, + 65 + azsech?{ 4+ 2» — 2p,tanh { = 0

which are direct consequences of (13) and (14). In fact, (19) are consistent
with (9)-(11). Therefore we have only three independent equations:

(d/d0)(o1 + 05) = ™% (20)

(d/dl)(o, — 03) = — 1 (21)
and
(dldD)(2v, — 205tanh { + 03 — 0 = 0 (22)
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In order to obtain solutions of (10) and (11), it is sufficient only to
solve o,, 03, and v,. Thus we have

o1 = 01(0) = 3 + 7 + 7% — Jen) (23)
o3 = 03(0) + L + 7 — 367 F + Le¥m) (24)

and from (22), v, is obtained as
v, = 30, — (¥ + tanh {)o; + K (25)

K is a constant which is determined later. In this way we have solved the
problem completely.

The variances o,,, however, should not be confused with the real
fluctuations {,, defined by

eCuv = <(Su - <Su>)(Sv - <Sv>) + (Sv - <Sv>)(Su - <Su>)>/2S2
Explicitly, these are given by

Lax = Oy + 3(lo— 1,7) (26)

lxz = Oyp — M M, (27)
and

gzz = 0y + %(1 - ,7222) (28)

In deriving these expressions, we have used phase space forms of the spin
operators, for example,®

S, — Sm, (29)
Sy —> S(S — Pm.® + 1S (30)

Thus we have obtained {’s in an analytical form. Figure 2 shows some
examples of the fluctuations. More details will be given in the next section.

3. FLUCTUATIONS IN A MOVING FRAME

In order to clarify the results obtained in the preceding section, we shall
discuss the variances and the deviations in the system moving along with the
classical spin (#,(r), n,(7), m.(7)). Then (m,., m, , m,) in the new coordinate
system (see Fig. 1) is represented by

M, sin 8(7) cos ¢, sin 8(7) sin ¢, cos O(7)] [ m,
(my,) = [ —sin ¢, cOoS ¢, 0 }(my)

—cos 8(r)cos ¢, —cos 8(7)sin ¢, sin H(r) m,
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5
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Y
» ¥
Fig. 1. Representation of the most probable value
m and the deviation u in polar coordinates.
the inverse transformation of which is given by
m, sin 8(7) cos ¢; —sinp, —cos 8(7) cosd,] [ M,
m, | = | sin 6(7) sin ¢, cosd, —cosf(r)singy || my | (31b)
m, cos 4(7) 0 sin 6(t) 1 \m,

Using (31a), the variances and the deviations in this frame can be cal-
culated, for example, as

My, = Z mm(mm,y, = EZ Mo, + 0(€2)
u,v v

Hence we have

Oyrxr = Z mm,o,, = 0
nsy

where we have used (14). In the same way, we obtain

e = O = 0y = 0 ()
Opeyr = 0 (33a)
Gy = 04 8in2 6(7) (33b)
Oy = 0gsin? 6(r) (33¢c)
Ay =1, My =y, =0 (34

U = —3(0yyr + 0pz) (35a)

4y =0 (350)

and
u, = sin 6(r) {(o; — o3) cos? 8(7)/2 — [0,(0) — 05(0)] cos? 8(0)/2} (35¢)

Now the meaning implied by the conditions (6) is clear. That is, it is
equivalent to the following statements:

(i) In the frame moving along with the classical spin, there are no cross
correlations or fluctuations in the radial direction.
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(ii) The effective length of the spin and the variances are related to
each other through (35a); as the fluctuations become larger, the average length
of the spin becomes shorter and vice versa.

The initial conditions are determined by requiring that the polar and
the azimuthal angles of {m) coincide with those of the classical spin 7,

ie., u, = 0at = = 0 (see Fig. 1). Then the constant X in (25) is determined
to be

K = 31 + tanh 7,)[e,(0) — 05(0)]

and hence we can freely choose the initial conditions on ¢,, 6(0), o,.,.(0), and
o,.(0). Initial values of other quantities are related through (19).

Fig. 2. Typical behavior of the various quantities as a function of = for 8 = «/12.
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Fig. 3. The transverse fluctuation {,,. as a function of = for various initial values of ;.

The variances and the deviations in the old frame are expressed in terms
of those in the moving frame as

Crx = Oy SIN% g + 0., COS? O(7) COS?

Oyy = Oy COS2 o + 0, cOs? O(7) sin? ¢,
sy = Oy 8iN% 6(7)

Oyy = — 0, Sin 6(7) cos 6(7) cos ¢,
Oyy = — G,y sin 6(7) cos O(7) sin ¢ (36)
Oxy = —SiN ¢y COS ¢g [0y — 0, cO8% O(7)]

U, = COS $olu, sin 6(7) — u.. cos 6(r)]
u, = sin ¢, [u,. sin 8(v) — u,. cos 0(7)]
U, = U, c0s §(1) — u, sin 6(z)

In this way, we are naturally led to the expressions (18) again. We can see
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that the variances o, and o, defined there are directly related to the fluctua-
tions in the moving frame through (33b) and (33c).

We plot £, Luys Loey and ., as functions of « in Fig. 2. The deviations
u, and u, are also plotted in Fig. 2 as functions of =. The fluctuations .,
and {,, are plotted for various initial conditions 8, in Figs. 3 and 4, respec-
tively, The variances ... and {,.,- and the deviation u,. in the moving frame
are shown in Fig. 5 as functions of 6(7). We find some interesting features
from these figures. For example, ., vanishes at # = =/2, while ., changes
its sign there. This behavior is attributed to the factors appearing in (36) and
also the consequences deduced from the earlier statement (i). The deviation
u,. becomes large near 6(r) ~ /2 due to the large fluctuations of the I’s.

gZZ

0t T v T T
1 2 3 LT

Fig. 4. The longitudinal fluctuation .. as a function of . The initial values of 6, are the
same as those for .
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Fig. 5. The longitudinal fluctuation {,..- and the transverse deviation #.- in the moving
frame as a function of 6(7).

As 0(r) = 7 (r - ), {,, and .. tend to a constant 1, corresponding to
the fact that the spin relaxes to the angular momentum eigenstate [S, — S).

Before concluding this section, we discuss the dependence of the maxi-
mum value and the half-width of variances on the initial conditions. When
we release the spin from the upper half-sphere, the variances .., and .,
have their maximum near 6(+) = /2. These variances are given by

Lo = L[sin? 6(7) In tan 16(+) — cos 8(7)] + % sin? O(z)

37
Ly = —3[sin® 6(r) In tan $6(7) + cos 8(7)] + (™, sin® 8(7) (37

where we have defined {2, and {7, by
7. = a3(0) + L(Iin cot? 16, + cot2 16, + 1) (38)

I

0.(0) + H(—Incot2 16, + cot? L0, + 1)

m
'y’
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We plot {%.. and {7,. as functions of 6, in Fig. 6; {Z, and {%.,., in general,
will not give the correct maximum values, but as 8, — 0, the first terms in
(37) can be neglected, and therefore the maximum values are approximated
by them.

A half-width A can be defined as the difference of the angles 6, and 6,
where { attains the value {"/2. Changing &’s into «’s through the relation
0 = w/2 — «, we have o, and o, as the solutions of the following equations:

moo 1 cosZaInl—_m-—Zsinoc

# T 2(1 = 2cos%0) 1 + sine '
and

m ———1—— coszalnl——wﬂ-Zsina

VYT 22 cosa — 1) 1+ sine

w2 n;z. g O

Fig. 6. Measure of the maximum values of the fluctuations {,-,- and {...- as a function
of the initial value 8.



Fluctuations of a Macro-Spin in a Superradiant System 79

First we note from (38) that the {™ become exceedingly large as the
initial direction of the spin approaches the north pole (see Fig. 6). This is a
sort of anomalous fluctuation around the unstable point.4®

As for the width, A decreases as ™ increases, and tends to =/2 as
{™ — o0.

4. CONCLUDING REMARKS

We have investigated fluctuation phenomena of a macro-spin under the
influences of a radiation field. This system gives an interesting example of a
stochastic motion of spins. We found remarkable fluctuations when the spin
passes through the superradiant state (f = 7/2) and interesting behavior
of the transverse fluctuations.

Our findings afford a solvable, typical system which shows anomalous
fluctuations around the unstable point.“®

APPENDIX

In this appendix, a brief summary is given of the generalized phase
space method of the spin systems.® 2

An operator G is mapped onto a c-number function F™ (8, ¢) (normal
rule of association) defined as a diagonal element of the Bloch state |S; w):

F®(0, $) = {S; 0|G|S; w) (A.D)

or onto a function F*)(6, $) (anti-normal rule of association) obtained by
expressing the operator in the form

G =25+ 1) f % IS; wX(S; w[FO(0, ) (A2)

where « denotes a solid angle spanned by ¢ and ¢.
The trace of two operators G, and G, is expressed by

Tr GG, = (5 + 1) [ 2 FEO6, HFE0, 9 a3

The following theorem turns out to be very useful for obtaining a c¢-
number form of an equation for the density matrix p.

Products of operators S,G and GS, are mapped onto a c-number space
according to the rule given by

S,G — FSOF(0, §)

A4
GS, — yflsz)*F@)(g, #), @ =x,, and z (A.4)
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where the superscript € specifies a mapping rule. Explicitly they are given by
SN = Sm + 4L — Li(m X L) (A.52)

for the normal rule of association, and
F® = (S + Dm + 3L + di(m X L) (A.5b)

for the anti-normal rule of association, respectively. The pseudo-spin m
is defined by

m = (m,, m,, m,) = (sin 8 cos ¢, sin @ sin ¢, cos 0)

and L is the ““orbital angular momentum’’ operator defined by (3).
From (A.3), a statistical average is obtained in this phase space as

O(m,, my, 1))
= f dm, dm, f®(m,, m,, 1)O(m,, my)/f dm, dm, f“*(m,, m,, t) (A.6)

where the quasi-probability distribution function is introduced by
f(A)(mxo my, t) = F(A)(mxa My, t)/mz (A7)
the function F*)(8, ¢) being obtained by mapping the density matrix.
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